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a b s t r a c t

Increasing evidence of the effects of changing climate on physical ocean conditions and long-term changes
in fish populations adds to the need to understand the effects of stochastic forcing onmarine populations.
Cohort resonance is of particular interest because it involves selective sensitivity to specific time scales
of environmental variability, including that of mean age of reproduction, and, more importantly, very
low frequencies (i.e., trends). We present an age-structured model for two Pacific salmon species with
environmental variability in survival rate and in individual growth rate, hence spawning age distribution.
We use computed frequency response curves and analysis of the linearized dynamics to obtain two
main results. First, the frequency response of the population is affected by the life history stage at which
variability affects the population; varying growth rate tends to excite periodic resonance in age structure,
while varying survival tends to excite low frequency fluctuationwithmore effect on total population size.
Second, decreasing adult survival strengthens the cohort resonance effect at all frequencies, a finding that
addresses the question of how fishing and climate change will interact.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In population theory, interest is increasing in the complexways
in which age-structured, density-dependent populations respond
selectively to different time scales (or frequencies) of variability
in the environment. These questions dovetail with the increasing
practical need to understand how populations will respond to
potential changes in life history parameters and the time scales
of environmental variability due to climate change and increasing
pressure on natural resources such as fisheries. There is a growing
awareness that model population responses can appear to filter
certain frequencies in environmental variability (Greenman and
Benton, 2005). Furthermore, these effects can serve to amplify
variability by exciting modes of population behavior that without
environmental variability would be locally stable (Greenman and
Benton, 2003). One example of such behavior, cohort resonance,
is closely identified with life history characteristics in that it
features cycles of period equal to the dominant age of reproduction
(Bjørnstad et al., 1999).
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There is particular interest in the dynamic responses of the ma-
rine fish targeted by global fisheries as they are subject to a dra-
matic artificial change in a life history parameter, adult survival,
and there are indications that the dominant time scales of en-
vironmental variables such as ENSO that affect fish populations
may change with a changing climate (Timmermann et al., 1999).
Empirical observations and models indicate that variability in fish
populations increases with increased fishing (Hsieh et al., 2006;
Anderson et al., 2008). The cohort resonance phenomenon in
fish populations presents particular problems for climate change
because it enhances sensitivity to very slow signals (trends) in
addition to those at the period of dominant age of reproduction
(Bjørnstad et al., 2004). Observations of such effects could be con-
foundedwith potential slow changes in the environment, and thus
make it difficult to differentiate between them.

Within the general concern for the combined effects of fishing
and climate change onmarine ecosystems (Perry et al., 2010), there
is a particular interest in the effects of the marine environment
and fishing on population dynamics of Pacific salmon on annual
to decadal time scales. Analyses of the influences of the ocean
environment on Pacific salmon, whether statistical examination
of covariability between population and environmental variables
(e.g., Logerwell et al., 2003) or estimation of survivals to specific
sizes and ages through the analysis of coded wire tagging data
(e.g., Coronado and Hilborn, 1998; Teo et al., 2009), commonly
assume that the variable ocean environment influences survival

0040-5809/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.tpb.2010.07.004



Author's personal copy

240 L. Worden et al. / Theoretical Population Biology 78 (2010) 239–249

during the early ocean phase of this anadromous genus. In fewer
cases environmental variability in the age of maturation has been
the dependent population variable (e.g., Pyper et al., 1999).

These empirical findings raise questions regarding the relative
roles of random variability in survival at various ages, and in the
age distribution of reproduction, in salmon population dynamics.
Random survival is typically assumed to influence abundance
directly, but the effects of varying age of spawning are not as
clear, and there is a need to understand differences in population
response to these two sources of random variability.

Here we examine and compare the effects of environmental
variability in survival and age of spawning on the magnitude and
time scales of population variability. We are engaged in a study of
the influence of the oceanographic environment on Pacific salmon,
the GLOBEC North East Pacific program, part of the US Climate
Change program. Earlier retrospective analyses indicated differ-
ences in the responses of the two California Current congeners,
chinook salmon, Oncorhynchus tshawytscha, and coho salmon, On-
corhynchus kisutch, and hence we are interested in the population
dynamic differences between them (Botsford and Lawrence, 2002).
For instance, coho salmon collapsed synchronously along the coast
between 1980 and 2000, and coho appear to have more high fre-
quency variability than chinook in their catch record. These species
differ in their age distribution of spawning and in otherways (Bots-
ford et al., 2005). We have explored some of the differences in
probabilities of extinction of populations with these spawning
age distributions in response to time-varying marine survival (Hill
et al., 2003; Botsford et al., 2005). In salmon, differences inmaturity
schedule are due to differences in size distribution (and therefore
prior growth rate) (Young, 1999; Vollestad et al., 2004). Similar ef-
fects occur in other non-salmonid species (Day and Rowe, 2002).
To avoid confusion, we note that the mechanisms studied here are
neither (1) the indirect effect on survival of varying development
rate due to consequent variation in time spent at higher mortal-
ity (e.g., Moloney et al., 1994), nor (2) the interaction between
age structure and over-compensatory density-dependent recruit-
ment that causes cycles of period roughly twice the generation
time (Ricker, 1954; Botsford, 1997).

In the models used here oscillations with period 2T do not
arise (where T is generation time or age of dominant effect on
recruitment), primarily because of the form of stock-recruitment
function we use, but the cyclic mode with period T turns out
to play a central role in our investigation. Recently Myers et al.
(1998) explored stochastic forcing of a cyclic mode of variability of
period T as a potential cause of observed cycles in sockeye salmon
(Oncorhynchus nerka) in British Columbia, Canada. This mode is
similar to the ‘‘echo effect’’ associated with linear age-structured
models of semelparous species (Sykes, 1969). Myers et al. noted
that while this mode would not be the dominant mode, it could
appear clearly in solutions obtained through forcing by randomly
varying survival. This was essentially cohort resonance, though
they did not use that term.

The time scales (or frequency content) of the population re-
sponse also depend on the mode of observation, e.g., whether the
data in a time series are recruitment, abundance or catch (Bots-
ford, 1986; Anderson et al., 2008). The nature of a catch time se-
ries depends on fishing mortality rate, with higher fishing rates
leading to higher frequencies of variability (Botsford, 1986; Hsieh
et al., 2006). Differences between the spectra of recruitment and
abundance have been illustrated by Bjørnstad et al. (2004) for
Atlantic cod (Gadus morhua). The most commonly available mea-
surement of salmon populations is annual catch, either in numbers
or biomass, and occasionally the age distribution of catch is deter-
mined. Frequently catch can be assumed to be individuals who if
not caught would be spawning that year because they are near the
mouth of (or in) the spawning river. In some streams, spawning es-
capement is also estimated, and sometimes the age composition of

spawners is also estimated. Catch and escapement can be summed
to obtain the total abundance of potential spawners in a year.
Total population abundance at time t cannot be observed directly,
but estimates can be obtained through cohort reconstruction from
several years of age-specific data from catch and escapement.

Here we explore several aspects of the spectral response of
marine fish population dynamics, using parameter values repre-
sentative of two species of Pacific salmon over a range of sur-
vivals as examples. Our practical interests are in the combined
effects of fishing and climate change, so we focus on effects of
long-term changes in survival on the population response to var-
ious time scales of environmental variability. Note, however, that
long-term declines in survival can also be caused by the climate,
independent of the fishery, as occurred in California Current coho
salmon between 1980 and 2000 (Botsford et al., 2005). We also
explore the differences in responses to environmental forcing at
different points in the life history (i.e. development rate vs. sur-
vival), and spectral differences between various kinds of obser-
vations (e.g., observations of recruitment vs. observations of total
abundance). We present results in terms of the changing spectral
responses, and relate the spectral response to the eigenvectors and
eigenspace structure of the linearized model.

2. Model Formulation

To investigate these questions, we introduce a density-depe-
ndent, stochastic age-structured model which we can use to
compare the effects of temporal variability in the timing of repro-
duction and annual survivorship of salmon. Let n be the maximum
spawning age in years, and let x⃗(t) = (x1(t), . . . , xn(t))T be the
age-structured population vector at year t . Then our model is

x⃗(t) = F(x⃗(t − 1), t) =



R(P(t))
s(t) x1(t − 1)
s(t) x2(t − 1)

...
s(t) xn−3(t − 1)

(1 − δe(t)) s(t) xn−2(t − 1)
δl(t) s(t) xn−1(t − 1)


(1)

where P(t) = (δe(t) xn−2(t−1)+(1−δl(t)) xn−1(t−1)+xn(t−1))
is the number of fish returning to spawn in year t , and

R(P(t)) =
αP(t)

1 + βP(t)
(2)

is a Beverton–Holt density-dependent recruitment term (Bever-
ton and Holt, 1957). Thus the recruitment R(P(t)) represents the
number of outmigrants (smolts) leaving a spawning stream in year
t , resulting from egg production by individuals of various spawn-
ing ages. We have assumed that migration from freshwater to the
marine environment occurs in the first year, and that there is no
difference in fecundity between the different ages of spawning.
Parameters α and β characterize the density-dependent reproduc-
tive phase: α is the density-independent per-capita growth rate
when the population is very small, and α

β
is the maximum total

number of offspring in the population. Timing of reproduction is
controlled by the remaining two parameters, δe(t) and δl(t): most
individuals spawn at age n − 1; a proportion δe(t) of those surviv-
ing to age n − 2 spawn at that age in year t − 1; and a proportion
δl(t) of age n− 1 fish in year t postpone spawning until year t + 1,
when they are agen. Annual survival s(t), aswritten here, affects all
age classes in year t . However, we also explore the possibility that
the dominant variability in ocean survival occurs during the period
immediately following ocean entry. This is a challenging stage for
juvenile salmon, as they are completing the transition from fresh-
water to the marine environment, and they are dependent on the
highly variable food production in the coastal ocean.
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Table 1
Model parameters and unperturbed values.

Parameter Description Coho value Chinook value

s◦ Annual survival rate, all ages 0.85, 0.28, 0.2 0.85, 0.28
δe Proportion of age n − 2 fish spawning 0.1056 0.1056
δl Proportion of age n − 1 fish delaying spawning to age n 8.84 × 10−5 0.1056
α Slope at origin of Beverton–Holt stock-recruitment curve 60 60
β Saturation parameter of Beverton–Holt stock-recruitment curve 1.7 × 10−4 1.7 × 10−4

a◦ Central age of spawning 2.75 4
σ Standard deviation of spawning age distribution 0.2 0.4
σE Standard deviation of environmental forcing signal 0.085 (survival) 0.085 (survival)

0.2 (spawning age) 0.2 (spawning age)

a(t)

δe(t) δ1(t+1)

n–3 n+1nn–1n–2
Age

Fig. 1. An example illustrating how the fraction of early and late spawners is
modeled. The central spawning age a(t) varies from year to year. Here we picture
a normal distribution of potential spawning age with mean a(t) = n − 1.1 and
σ = 0.8. The parameters representing the proportions of early spawners (δe) in
year t and late spawners (δl) in year t + 1 are the integrals of this function over
(−∞, n − 1.5] and [n − 0.5, ∞), respectively.

We are interested in understanding the time scales of variation
in the solutions to the model (Eq. (1)) in response to fluctuations
in annual survivorship and timing of spawning. We do this by
studying three cases: the case of fluctuating survival s(t) at all
ages, the case in which survival varies but only at the age of entry
into the ocean, and the case in which fluctuating mean age of
spawning a(t) produces yearly changes in δe(t) and δl(t). In all
cases, the environmental fluctuation is a Gaussian white-noise
signal, ξ(t) ∈ R with E(ξ(t)) = 0. To model fluctuating survival
we use s(t) = s◦ + ξ(t), where s◦ is the unperturbed, constant
survival. In the simulation the distribution of s(t) is truncated to
ensure that 0 ≤ s(t) ≤ 1. To model fluctuating age of spawning,
we suppose that individuals’ ages of spawning are chosen from a
normal distributionwhosemean is the central age of spawning a(t)
in year t (Fig. 1), specifically

p(a − a(t)) =
1

√
2πσ

e
−


a−a(t)
√
2σ

2
. (3)

We approximate early and late spawning by having all early
spawners spawn at age n− 2 and all late spawners spawn at age n,
so that

δe(t) =

∫ n−1.5

−∞

p(a − a(t)) da (4)

and

δl(t) =

∫
∞

n−0.5
p(a − a(t − 1)) da. (5)

From the point of view of a cohort, the portions of that cohort that
will spawn early and late, i.e., δe and δl, are set by the value of a(t)
in the year that cohort transitions from age n−2 to age n−1. That
is, δe(t) is a function of the central spawning age in year t , whereas

δl(t), which has its effect a year after it is determined, is a function
of the central spawning age in year t−1.Wemodel the fluctuating
central age of spawning as a(t) = a◦

+ ξ(t).
To compare the dynamics of the two salmon species along

the west coast of the contiguous US, we have used parameter
values that approximate known or likely values for the populations
of coho and chinook salmon. Survival rates in the ocean are
reasonably well known, and we consider three cases: a ‘‘typical’’
value of 0.85 yr−1 (Bradford, 1995), a ‘‘small’’ value of 0.28 yr−1,
and a ‘‘very small’’ value of 0.2 yr−1, estimated from more recent
observations of coho salmon. Since the ‘‘very small’’ value is not
sustainable in the chinook model, that case is not considered. The
distributions of values of α and β (Eq. (2)) have been estimated
for coho salmon, but not for chinook salmon (Barrowman et al.,
2003), and we use the modes from those distributions (α =

60 and β = 0.00017). In chinook salmon populations in the
California Current, individuals typically spawn primarily at a single
dominant age, with less spawning at adjacent ages. The dominant
age of spawning increases with latitude (Hill et al., 2003). Here
we chose dominant spawning at age 4, i.e., n = 5 and a◦

= 4.
Precocious spawning in chinook salmon ranges from 0%–10% in
males and from 0%–3% in females (Healey, 1991). We use σ =

0.4, which makes δe = δl ≈ 0.1. Coho salmon in the California
Current spawn predominantly at age 3with substantial precocious
spawning at age 2 and minimal spawning at age 4. Precocious
spawning in coho salmon consists almost completely of males,
is more variable than in chinook salmon, and can be as high
as 30% in natural wild populations (Sandercock, 1991). It is not
possible to observe the effects of precocious spawning by males
on reproduction directly, but for coho salmon, a modification of
genetic methods for estimating effective population size indicated
the effective proportion of 2-year-olds to be 35% in two naturally
spawning populations (Doornik et al., 2002). For coho salmon we
chose n = 4, a◦

= 2.75 and σ = 0.2, which makes δe ≈ 0.1 and
δl ≈ 0.0001. The standard deviation of the stochastic variation,
σE , is 0.085 for variation in survival, and 0.2 for variation in mean
spawning age (Table 1).

3. Model analysis

In each of themodel cases, the age vector x⃗ converges to a neigh-
borhood of a single point, and fluctuates in that neighborhood in
response to the fluctuating life history parameters. To find the cen-
ter point, we consider the deterministic system defined by Eq. (1)
with s, δe, and δl all fixed at their unperturbed values. This system
has a unique positive fixed point that is globally attracting for pos-
itive trajectories:

˜⃗x =



1
s
s2
...

sn−3

(1 − δe)sn−2

(1 − δe)δlsn−1


α − c

β
, (6)
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where 1/c = δesn−3
+ (1 − δe)(1 − δl)sn−2

+ (1 − δe)δlsn−1 is the
amount of spawning in the lifetime of the average smolt.

As we will see, we can understand a great deal about the
population dynamics by looking at the linearized dynamics at this
fixed point of the deterministic dynamics. We linearize the effect
of the stochastic noise term ξ(t) as well as the age-structured
population vector x⃗(t):

y⃗(t) ≈ Jy⃗(t − 1) +

L−
l=0

H⃗(l)ξ(t − l), (7)

where y⃗(t) = x⃗(t) − ˜⃗x(t) is the deviation from the fixed point,
J is the Jacobian matrix of the dynamics at the fixed point, and
linearizing in the noise term gives a sequence of ‘‘forcing vectors’’
H⃗ that summarizes how the noise enters into the dynamics with
various time lags (see the Appendix for details).

At the fixed point, the Jacobian matrix is

J =



0 · · · 0 δe
c2

α
(1 − δl)

c2

α

c2

α
s 0

. . .

s
...

(1 − δe)s
δls 0


, (8)

where all entries left blank are zero.
A linear system like this one decomposes naturally into inde-

pendent subsystems located in linearly independent one- and two-
dimensional subspaces, each characterized by a real eigenvalue or
a complex pair of eigenvalues (Hirsch and Smale, 1974). The right
eigenvectors of the Jacobian matrix are the basis vectors for each
of these subspaces of the dynamics. The complex conjugate eigen-
values of the Jacobian predict the resonant frequencies of the pop-
ulation’s response to noise. In the time-varying-survival cases, we
only need a single forcing vector H⃗ , because the state of the envi-
ronment in year t , ξ(t), only affects survival in year t; but in the
varying-age-structure case, because conditions in year t affect the
number of early returns δe in year t and the number of late returns
δl in year t + 1, we have to include two forcing vectors to describe
the effects with and without one year’s time lag.

In the case of fluctuating survival at all ages, the forcing is
captured by the vector H⃗s(0), with

H⃗s(0) =


∂Fi

∂ξ(t)


=



0
x̃1
x̃2
x̃3
...

x̃n−3
(1 − δe)x̃n−2

δlx̃n−1



=



0
1
s◦

(s◦)2
...

(s◦)n−4

(1 − δe)(s◦)n−3

(1 − δe)δl(s◦)n−2


α − c

β
. (9)

We note that when survival is forced additively, as we have done
here, the deterministic system described above is not exactly the

mean of the stochastic system. A stochastic system with s(t) =

s◦eξ(t) would have the deterministic system as its mean, but in the
limit of small noise, these representations have identically shaped
frequency responses that merely differ by a factor of s. We chose
additive noise for convenience.

For forcing of survival at ocean entry, only survival to age 2 is
subject to fluctuation, so that

H⃗se(0) =



0
α − c

β

0
...
0

 . (10)

For time-varying ages of maturation, we have lag 0 effects from
early spawning

H⃗a(0) =


∂Fi

∂ξ(t)


=


∂Fi
∂δe

∂δe

∂ξ(t)


(11)

and lag 1 effects from late spawning

H⃗a(1) =


∂Fi

∂ξ(t − 1)


=


∂F
∂δl

∂δl

∂ξ(t − 1)


. (12)

Since ∂a(t)
∂ξ(t) = 1 we have

∂δe(t)
∂ξ(t)

=

∫ n−1.5

−∞

−p′(a − a(t)) da = −p(n − 1.5 − a(t)) (13)

and
∂δl(t)

∂ξ(t − 1)
=

∫
∞

n−0.5
−p′(a − a(t − 1)) da

= p(n − 0.5 − a(t − 1)). (14)

The vector derivatives we need are


∂Fi
∂δe


=



sn−3 c
2

α
0
...
0

−sn−2

0


α − c

β
(15)

and


∂Fi
∂δl


=


−(1 − δ◦

e )s
n−2 c

2

α
0
...
0

(1 − δ◦

e )s
n−1


α − c

β
, (16)

where δ◦
e refers to the unperturbed value of δe. Substituting (13)

and (15) into (11) yields the forcing at lag 0,

H⃗a(0) =



−p(n − 1.5 − a◦)sn−3 c
2

α
0
...
0

p(n − 1.5 − a◦)sn−2

0


α − c

β
. (17)

Substituting (14) and (16) into (12) gives the forcing at lag 1,
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Fig. 2. Graphical interpretation of the equilibrium recruitment as the intersection of the smolt–adult curve and a line through the originwith slope 1/(lifetime reproduction)
for (a) chinook and (b) coho salmon.

H⃗a(1) =


−p(n − 0.5 − a◦)(1 − δ◦

e )s
n−2 c

2

α
0
...
0

p(n − 0.5 − a◦)(1 − δ◦

e )s
n−1


α − c

β
. (18)

4. Results

4.1. Dynamics near the fixed point

Each of these models without random fluctuation has a unique
positive fixed point (Eq. (6)). The condition for a fixed point can
be illustrated in terms of the stock-recruitment function and a
straight line through the origin with slope equal to the inverse
of mean lifetime egg production, as shown in Fig. 2 (Sissenwine
and Shepherd, 1987). The fixed point lies at the intersection of
these, allowing clear interpretation of the effects of long-term
changes in survival. As mean ocean survival declines, equilibrium
egg production declines, and eventually recruitment declines. For
the very low survival rate for chinook salmon, the fixed point is
zero indicating survival is not adequate for persistence. Because
the parameters for the stock-recruitment relationship and the
estimated survivals are for coho salmon, this has no implications
for real chinook salmon populations.

Plots of the eigenvalues of the linearization at the fixed point
of each of these models indicate the modes of variability, and
how they change with survival (Fig. 3). Note that the chinook
model has 5 eigenvalues, while the coho model has 4 eigenvalues
because those are the maximum ages in each model population.
In both the chinook and coho models, the linearized population

dynamics respondmost strongly to forcing in the one-dimensional
mode corresponding to the positive real eigenvalue, λ1 (the
dominantmode of variability). Motion in thismode occurswithout
oscillation, that is, at low frequencies. The next strongest mode
is a resonance at period n − 1 or a little less (determined by
the eigenvalues λ2 and λ3, whose angle from the positive axis is
approximately±

2π
n−1 ), indicating oscillationswith a period equal to

one generation time. In the chinook case (Fig. 3(a) and (c)) there is
also a strong resonance at period two, corresponding to a negative
eigenvalue, and in all cases there is a weakly resonating negative
eigenvalue as well.

In both the chinook and the coho case, the effect of decreasing
the mean survival is to move all eigenvalues outward toward the
unit circle, increasing the return time of all subsystems of interest
and thereby increasing the expected magnitude of the cumulative
response to variation over time. This effect is especially strong in
the chinook model for ‘‘small’’ s (Fig. 3(c)). This occurs because
the rate of change of recruitment with adult stock increases
substantially as the survival declines (Fig. 2). Therefore, low
equilibrium abundances in Fig. 2 correspond to large magnitude
eigenvalues (and, thus, large responses to variation) in Fig. 3.

The spread in ages of spawning has a relatively small specific
influence on the locations of the eigenvalues. When σ = 0, all
fish spawn at age n − 1, and the eigenvalues are roots of a simple
characteristic polynomial, P(λ) = λ


λn−1

− sn−2 c2
α


. There is

one zero root and the others are equal in size and evenly spaced
around zero (not shown). As σ increases, the dominant, positive
real eigenvaluemoves outward on the negative real axis, the others
move inward slightly and the complex eigenvalues rotate slightly,
their polar angles becoming slightly smaller in the chinook case
and slightly larger in the coho case. In all cases other than σ = 0,
the positive eigenvalue is largest inmagnitude (consistentwith the
Perron–Frobenius theorem, since the entries of J are nonnegative).



Author's personal copy

244 L. Worden et al. / Theoretical Population Biology 78 (2010) 239–249

–1 0 1

c

–1 0 1

b

–1 0 1

d

–1 0 1

e

–1 0 1

1
a

λ 1

λ 2

λ 3

λ 4

λ 5

–1

0

–0.5

0.5

1

–1

0

–0.5

0.5

1

–1

0

–0.5

0.5

1

–1

0

–0.5

0.5

1

–1

0

–0.5

0.5

Im
(λ

)

Re(λ)

Fig. 3. Eigenvalues of linearization matrix J in chinook and coho models for typical survival: (a) chinook, s = 0.85 yr−1 , (b) coho, s = 0.85 yr−1; small survival: (c) chinook,
s = 0.28 yr−1 , (d) coho, s = 0.28 yr−1; and very small survival: (e) coho, s = 0.2 yr−1 .

For our purposes, we conclude that the spread in spawning age
has very little impact on the model dynamics (too slight to justify
an illustration, in fact), and so our models do not indicate that it
is an important difference between chinook and coho population
dynamics.

4.2. Mechanism of environmental forcing

To illustrate the difference between population responses to
different mechanisms of environmental forcing we compare the
cases with (1) variability in survival in each ocean year, (2) vari-
ability in survival at the age of ocean entry only and (3) vari-
ability in the spawning age distribution. Random variability in
survival appears to preferentially excite the geometrically decay-
ing mode, while variability in the spawning age preferentially ex-
cites the cyclic mode. This conclusion holds for all five of our
model cases: the resonant frequency is about 0.33 yr−1 for the coho
salmon, whose dominant age of spawning is three years, and about
0.25 yr−1 for the chinook salmon, whose dominant age of spawn-
ing is four years (not shown here, see next example). The one ex-
ception is that for the chinook model with s◦ = 0.28 yr−1, there is
a strong low frequency component with variation in spawning age
as well as the period-4 component.

We illustrate this general result with the case for coho salmon
with s◦ = 0.28 yr−1 by comparing the frequency responses to

survival varying at all ages, for survival varying only at age 1,
the presumed age of ocean entry, and for variability in spawn-
ing age, then presenting examples of time series for each case.
Both frequency responses to environmental variability in survival
(Fig. 4(a)) decline from very low frequency, leveling off slightly
at a frequency just below that corresponding to period 3 (the
dominant age of spawning for coho salmon), then decline for
higher frequency. The simulations indicate up to approximately
20% greater variability than the analytical model in both survival
cases. The case with variable ocean survival at all ages (Fig. 4(b))
is skewed more toward variability at low frequencies. The fre-
quency response to environmental variability in the spawning age
distribution increases from low frequency to a resonance at a fre-
quency slightly greater than that corresponding to period three,
the dominant age of spawning, consistent with cohort resonance.

The time series for each case (Fig. 5) indicate a visually discern-
able difference betweenpopulations drivenby environmental vari-
ability in survival and environmental variability in spawning age
distribution. The populationwith environmental forcing of spawn-
ing age (Fig. 5(c)) has clear indications of cohort resonant behav-
ior near period 2–4 yr, while the populations with environmental
forcing of survival tend toward 5–10 yr fluctuationswith little vari-
ability. The difference in the magnitude of variability between the
series with varying survival is as expected from the difference in
area under the two thin lines in Fig. 4(a).
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Fig. 4. Magnitude of frequency response of recruitment for the linearized model
(thin lines) and nonlinear simulations (bordered lines) for environmental forcing of
(a) early ocean survival rate (solid lines) and ocean survival at all ages (dashed lines),
and (b) spawning age distribution for coho salmon with s◦ = 0.28 yr−1 . See the
Appendix (Eq. (A.10)) for derivation of the linearized frequency response. Nonlinear
frequency response curves are estimated by calculating the averagemagnitude (the
square root ofmean power at each frequency) of the fast Fourier transforms of 1000
simulation time series of length 128, and scaling the result by

√
128σE , to obtain the

same units as the analytically derived transfer function.

4.3. Population observation

To determine the effects of the type of observation on the
time scales of variability we compared the results of observing
recruitment to the results of observing total abundance for
each case. Generally, they all exhibited relatively more 2–5 year
oscillation in the recruitment and more low frequency fluctuation
in the total abundance.

To illustrate the difference between different types of popula-
tion observations, we show the results of observing recruitment
with the results of observing total abundance, for chinook salmon
with typical survival (s = 0.85 yr−1) and environmental vari-
ability in the spawning age distribution (Fig. 6). The spectral re-
sponse of recruitment increases from low frequency to a peak at
about 0.25 yr−1, the frequency expected for chinook salmon with
dominant age of reproduction at 4 yr, then declines. The spectral

0 0.1 0.2 0.3 0.4 0.5
0

2000

4000

6000

8000

10000

12000

a

R
el

at
iv

e 
m

ag
ni

tu
de

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2
x 10

5
b

Frequency (yr–1)

Fig. 6. Magnitude of frequency response of (a) recruitment and (b) total abundance
for the linearizedmodel (black line) and nonlinear simulations (bordered line; 1000
simulations of length 128) for environmental forcing of spawning age distribution
for chinook salmon with s = 0.85 yr−1 .

response of total abundance, the sum of several cohorts, declines
monotonically from low frequency, showing only a hint of the res-
onance present in recruitment.

The time series of these two cases (Fig. 7) reflect these charac-
teristics. The time series from the population with observations of
recruitment of a chinook salmon population with environmental
forcing of spawning age appears to have a preponderance of vari-
ability on time scales of 2–5 yr, while the time series from the ob-
servation of abundance appears to be a smoothed version of that.

4.4. Long-term mean survival

To illustrate the differences between populations operating
at different levels of long-term survival we compared the coho
salmon recruitment from a model with environmental variability
in spawning age distribution with each of the three survival
levels, typical, small and very small (Fig. 8). The shift to lower
constant survivals could result from fishing or a shift in climate.
The frequency responses with these three survivals have similar
shapes but differ substantially in scale. The resonance at period just
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Fig. 5. Time series of recruitment in simulations with environmental forcing of (a) early ocean survival (σE = 0.085), (b) ocean survival at all ages (σE = 0.085), and (b)
spawning age distribution (σE = 0.2) for coho with s◦ = 0.28 yr−1 . Identical sequences of standard normal random variables were used as the forcing signal in order to
allow a comparison of filtering by different demographic mechanisms.
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Fig. 8. Magnitude of frequency response of recruitment for the linearized model
(thin lines) and nonlinear simulations (bordered lines; 1000 simulations of length
128with σE = 0.2) for environmental forcing of spawning age distribution for coho
with s = 0.85 yr−1 (solid lines), 0.28 yr−1 (dashed lines), and 0.2 yr−1 (dash-dotted
lines).

less than 3 years is dominant because the variability is in spawning
age distribution. Note the greater increase in sensitivity to low
frequencies as the survival decreases to its lowest level.

The time series of these three cases (Fig. 9) appear to have
similar frequency content, but different levels of variability as
expected from Fig. 8. Importantly, they also underscore the fact
that as survival declines variability increases as in Fig. 8, as the
equilibrium recruitment declines.

5. Discussion

These analyses provide an understanding of how various pop-
ulation characteristics shape the response of salmon populations
to environmental variability on various time scales. Salmon popu-
lation variability does not simply follow variability in the environ-
ment as is commonly assumed, but rather the observed response
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Fig. 9. Time series of recruitment in simulations with environmental forcing of
spawning age distribution (σE = 0.2) for coho with s = 0.85 yr−1 (solid black),
0.28 yr−1 (white with black border), and 0.2 yr−1 (dashedwhite on black). Identical
sequences of standard normal random variables were used as the forcing signal in
order to allow a comparison of filtering at different survival rates.

is shaped by three factors: (a) the life history point of impact of
the environment, (b) how the population is censused, and (c) pre-
conditioning by long-term changes in survival. These considera-
tions have important consequences for themanagement of salmon
populations and the anticipation of the effects of large-scale envi-
ronmental change. The dynamics of salmon responses to the envi-
ronment are, of course, not unique, but rather are closely related to
those of other higher trophic level, age-structured species (McCann
et al., 2003; Bjørnstad et al., 2004).

The importance of cohort resonance to climate change is en-
hanced by the finding that its effects intensify with decreasing
survival. There is concern over the effects of climate change on
fisheries, and how management should change to mitigate those
changes (e.g., Perry et al., 2010). The basic resonance mode with
period T appears as the second and third eigenvalues in the lin-
earized model, a conjugate pair. It is well known in linear age-
structured models, as the echo effect (Sykes, 1969; Caswell, 2001),
andwas identified earlier as a potential cause of observed cycles in
some salmon populations (Myers et al., 1998). However, increasing
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cohort resonance with fishing has not been mentioned as a factor
in the variability in fished populations. Knowing that high levels
of fishing and specific time scales of environmental variability can
increase overall population variabilitywill be valuable in formulat-
ingmanagement policies tomaintain sustainability. The additional
variability increases the risk of population collapse in addition to
that risk incurred by reducingmean abundance. In addition, know-
ing that fish populations could be more sensitive to some time
scales thanotherswill aid in the explanation of changes in fisheries’
variability if the time scales of forcing change with climate. Poten-
tial intensification of cohort resonance through increased fishing
also underscores the importance of Bjørnstad et al.’s (2004) warn-
ing regarding the low frequency effect of cohort resonance, sen-
sitivity to very low frequency environmental variability. Fishing
increases the chances that populations, evenwhen driven bywhite
noise in the environment, could generate very slowly changing sig-
nals that could be mistaken for the effect of a slowly changing
climate. This hard-to-detect long-timescale change may present a
third increase in threatwhen coupledwith reduced abundance and
increased variability due to fishing. Note that this increased sen-
sitivity at low frequencies was seen in coho salmon (Fig. 8) and
also in chinook salmon with s = 0.28 yr−1 (as noted at the end of
Section 4.2).

Differences in the dynamic responses of populations to tempo-
ral variability at different points in the species’ life history are not
commonly considered. For salmon (and most other marine fish),
while the effects of variability in survival are widely appreciated,
the authors are unaware of any description of the effects of vari-
ability in spawning age distribution on population dynamics, such
as on cohort resonance. Here we found that the different mech-
anisms involving variability in survival and variability in spawn-
ing age distribution preferentially excited different fundamental
modes of variability; hence these differences are clearly important.
In addition to variability in spawning age exciting a completely dif-
ferent mode than variability in survival, responses to varying sur-
vival at ocean entry and varying total survival also differed, with
less sensitivity to low frequencies resulting fromvariability in early
ocean survival than from variability in total survival. This further
motivates efforts to discover the ages and locations at which vari-
ability in salmon marine survival occurs. This may be related to
the difference in population persistence between these two sur-
vival mechanisms in earlier analysis (Botsford et al., 2005), where
population variability was greater when it occurred at the age of
return to the river for spawning, rather than the age of ocean entry
of smolts. In that case this difference occurs because of the Law of
Large Numbers, and the fact that the logarithm of the number of
spawners is the sum of several random survivals when variability
is at the age of entry, but only one random survival when it is at
the age of return.

In our models, varying age of spawning causes much more
oscillation at the period of the generation length and less low
frequency fluctuation than varying survival does. This might be
because changes in central spawning age have a double effect
on recruitment, removing fish from one year’s stock of potential
spawners and adding them to the next or previous year’s potential
spawning stock. This perturbation has a direct effect on two
cohorts’ recruitment, which is echoed in subsequent generations
when those cohorts spawn. Fluctuations in survival, on the other
hand, whether they affect one cohort or many, cannot have this
double effect, with the likely consequence that the period-T echo
effect is not as extreme.

The difference in frequency content between a catch (or abun-
dance) series and a recruitment series was known previously
(e.g., Botsford, 1986), but there has been renewed interest in
it. That difference basically follows from the Law of Large Num-
bers and the fact that when recruitment is the source of tempo-
ral variability, abundance will have a lower coefficient of variation

because it is the sum of several recruitments, and hence can be ex-
pected to be a smoothed version of the recruitment signal, i.e., to
emphasize lower frequencies. As the value of constant harvest rate
increases, the number of cohorts summed diminishes, and hence
higher frequencies are observed.

Themajor difference between the population dynamics of coho
salmon and chinook salmon revealed here is that they would be
most sensitive to different time scales of environmental variabil-
ity, as determined by the difference between the dominant age
of spawning in each. Also, one explanation proposed for the fact
that coho salmon declined near 1980, while chinook salmon did
not, was that narrower width of the coho spawning age distribu-
tion. The effect of width of the spawning age distribution we de-
termined here was not strong enough to support this hypothesis,
leaving open the possibility that coho salmon were merely fol-
lowing a decline in ocean survival which did not decline for chi-
nook salmon. These theoretical results are not definitive regarding
specific stocks; rather they provide a context for further detailed
investigations of the hundreds of coho and chinook salmon popu-
lations along the west coast of the US.

As with other structured population models (Nisbet and
Gurney, 1982; Bjørnstad et al., 2004; Greenman and Benton, 2003),
this model’s response to environmental fluctuation is predicted
well by the linearization at the deterministic model’s fixed point.
Like Greenman and Benton, we find amplification of noise as
parameters vary—in our case, environmental noise is amplified
more by the population dynamics when survival is reduced. In our
case, however, this amplification is not associated with a nearby
bifurcation, only with eigenvalues moving closer to the unit circle,
a more general phenomenon.

As discussed above, we also observe major differences in
frequency responses among different kinds of environmental in-
fluences and between different population measurements. The
analysis in our Appendix explains these differences in terms of
different geometric relationships between the forcing vectors, the
eigenspaces corresponding to the eigenvalues of the lineariza-
tion, and the measurements. The projection of the forcing vec-
tors H⃗ into each dynamical subspace determines how strongly
the environmental noise stimulates motion in that subsystem, and
therefore how prominent resonance at that frequency is in the
population dynamics. Similarly, different observations – total pop-
ulation and recruitment – include the different subsystems in dif-
ferent proportions, and so each mode of population behavior is
more visible in some observations than others (see the Appendix
for the mathematical treatment of these ideas). This analysis, to-
gether with the diversity in frequency responses we see in our
models, points to the importance of understanding the relation-
ship between the eigenspace structure of the linearization and the
relative importances of the resonant frequencies associated with
each eigenspace. As an analytical technique, this approach may be
useful in multispecies ecological models as well as in structured
population models.

The results obtained here provide the means both to begin to
explain current differences in responses to the environment by the
same species at different locations, and to project differences in
future responses on the basis of projected changes in time scales
of variability in the environment. Current differences in responses
by populations of the same species are typically presumed to im-
ply a difference in environmental forcing, but they may be due to
differences in life histories or differences in pre-conditioning be-
cause they are fished at different intensities. Future changes in time
scales of variability are expected on the basis of paleontological
records (e.g., past changes in the time scales of variability of El Niño
events as observed in corals and other media, Jones et al., 2009)
or predictions from global climate models (Timmermann et al.,
1999).
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Appendix. General mathematical results

The linearization of a stochastic map
x⃗(t) = F(x⃗(t − 1), ξ(t), ξ(t − 1), . . . , ξ(t − L)), x⃗(t) ∈ Rn,

ξ(t) ∈ R, (A.1)
where (without loss of generality) E(ξ(t)) = 0, is

y⃗(t) ≈ Jy⃗(t − 1) +

L−
l=0

H⃗(l)ξ(t − l) (A.2)

where x⃗(t) = ˜⃗x + y⃗(t), ˜⃗x is a fixed point of F(x⃗, 0), J =


∂Fi
∂xj


(˜⃗x,0)

is the Jacobian matrix of F at x⃗ = ˜⃗x and ξ = 0, H⃗(l) =
∂F

∂ξ(t−l) (
˜⃗x, 0)

is a vector expressing the dependence of F on the noise terms,
and L is the maximum time lag at which stochastic perturbations
affect F directly. Let v⃗i and u⃗i be the left and right eigenvectors
of J, respectively, and λi its eigenvalues, so that v⃗iJ = λiv⃗i and
Ju⃗i = λiu⃗i. In this paper we only consider matrices that have all
distinct eigenvalues.

We change to the natural coordinate system of J: Let

U = (u⃗1, . . . , u⃗n), V =

v⃗1
...
v⃗n

 ,

3 =


λ1 0 · · · 0
0
...

. . .
...
0

0 · · · 0 λn

 ,

(A.3)

with J = U3V =
∑

i λiu⃗iv⃗i and UV = VU = I. Then for w⃗ = Vy⃗,

w⃗(t) = Vy⃗(t) = 3Vy⃗(t − 1) +

L−
l=0

G⃗(l)ξ(t − l)

= 3w⃗(t − 1) +

L−
l=0

G⃗(l)ξ(t − l) (A.4)

with G⃗(l) = VH⃗(l). Using the terms of this transformed vector w⃗,
the vector of deviations from equilibrium can be written as a sum
of eigenvectors, y⃗ =

∑
i wiu⃗i. Since 3 is diagonal, the dynamics of

each wi(t) is uncoupled from the others:

wi(t) = λiwi(t − 1) +

L−
l=0

gi(l)ξ(t − l) (A.5)

where gi(l) = v⃗iH⃗(l) is the ith entry of G⃗(l). Thus, w⃗(t) is the state
of the linear system decomposed into its independent subsystems,
and the vectors G⃗(l) represent the stochastic forcing resolved into
the decomposed coordinate system.

Forcing and measurement

The entries of the transformed vector G⃗ reveal how strongly the
environmental forcing acts on each subsystem of the linearized
system. Different kinds of forcing (i.e. survival, age of maturation)

are distributed differently among the different subsystems,
characterized by the projection of the forcing into each eigenspace,
gi(l) = v⃗iH⃗(l) for each i and l. If gi(l) = 0 for all l, there is no
fluctuation in the subspace containing eigenvector u⃗i, that is, no
fluctuation in wi. In general, the more H⃗ is aligned with certain
eigenvectors u⃗i, the more the fluctuations caused by the forcing
signal will be concentrated in those subsystems.

Similarly, a particular measurement generally observes some
subsystems more than others. Assume that we are observing
the population via a scalar measurement, whether annual total
population, recruitment or catch, represented as M(t) = Q (x⃗(t)).
Let us assume that Q (x⃗) is differentiable at the fixed point ˜⃗x. In
the weak-noise limit this quantity also can be described by a linear
approximation,

Q (x⃗(t)) = Q (˜⃗x) +

−
i

∂Q
∂xi

(˜⃗x) yi(t) + O(|y|2)

= Q (˜⃗x) +

−
i

qi yi(t) + O(|y|2). (A.6)

The measurement M(t) is approximated by the linear quantity
Q (˜⃗x)+

∑
i qi yi(t), which differs by only a constant from

∑
i qi xi(t),

and fluctuation in either quantity has the same characteristics
as fluctuation in

∑
i qi yi(t). We can represent the linearized

measurement as a vector product q⃗ y⃗(t), using a row vector q⃗ =

(q1, . . . , qn). Changing to the natural coordinates of J,

q⃗ y⃗(t) = q⃗
−

i

wi(t) u⃗i =

−
i

q⃗ u⃗i wi(t) =

−
i

mi wi(t). (A.7)

Then mi = q⃗ u⃗i expresses how strongly the motion in the sub-
system containing wi is reflected in the measurement.

Frequency analysis

For the frequency analysis, take w⃗(t) = 0⃗ and ξ(t) = 0 for all
t < 0. Then we may write the Z-transform (Elaydi, 1999):

ŵ(z) ≡

∞−
k=0

w⃗(k) z−k

=

∞−
k=0


3 w⃗(k − 1) +

L−
l=0

G⃗(l) ξ(k − l)


z−k

= 3

∞−
k=0

w⃗(k − 1) z−k

  +

L−
l=0

G⃗(l)
∞−
k=0

ξ(k − l) z−k

   . (A.8)

The bracketed expressions are themselves Z-transforms of shifted
sequences of w⃗ and ξ , so that by the shift property of the Z-
transform (Elaydi, 1999),

ŵ(z) = 3 z−1ŵ(z) +

L−
l=0

G⃗(l) z−lξ̂ (z) (A.9)

or

ŵ(z) = (I − 3 z−1)−1
L−

l=0

G⃗(l) z−lξ̂ (z). (A.10)

(I − 3z−1)−1 is a diagonal matrix with entries 1
1−λiz−1 =

z
z−λi

.
Consequently the Z-transformed deviation vector,

ŷ(z) = Uŵ(z) =

n−
i=1


u⃗i

z
z − λi

L−
l=0

gi(l) z−lξ̂ (z)


, (A.11)

is a linear sum of rational functions of z, with peaks tending to be
near the eigenvalues of J.
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Similarly, in the frequency analysis of a measurementM(t),

M̂(z) =

∞−
k=0

M(k)z−k

≈

−
k


Q (˜⃗x) +

−
i

mi wi(k)


z−k

=

−
k

Q (˜⃗x) z−k
+

−
i

mi ŵ(z). (A.12)

It is appropriate to discard the constant part of M(t) since we are
concerned with year to year variation:−

i

mi ŵ(z) =

−
i


mi

L−
l=0

gi(l)
z

z − λi
z−lξ̂ (z)


= TM(z) ξ̂ (z). (A.13)

The frequency response TM(z) of the measurement M(t) is a
weighted sum of the frequency responses for each subsystem,
Ti(z) =

z
z−λi

, eachweighted both by the strength of environmental
forcing in that subsystem at each lag, gi(l), and by the ‘‘emphasis’’
of the subsystem in the measurement,mi.
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