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There is a need for better description and heuristic understanding
of the sustainability of populations connected over space by a
dispersing stage, both for management purposes and to increase
our basic knowledge of the dynamics of these populations. We
show that persistence of such a population of connected subpopu-
lations depends on whether the sum of the reproductive gains
through all possible closed, between-patch reproductive paths
through multiple generations, relative to the shortfall in self-
persistence in each path, exceeds unity plus extra terms, which
only appear if there are four or more patches. These extra terms
have the heuristic explanation that they avoid double counting of
reproductive paths that arise with four or more patches because
there can be nonoverlapping subnetworks. Thus only those pat-
terns of reproduction and connectivity which eventually lead to
descendants returning to the patch from which they originate
contribute to persistence. This result provides the basis for evalu-
ating connectivity and habitat heterogeneity to understand re-
serve design, the effects of human fragmentation, the collapse of
marine fisheries, and other conservation issues.

connectivity � M-matrix � population dynamics � spatial dynamics �
marine reserves

Understanding conditions for the persistence of populations
that are distributed over space is a central issue in popu-

lation biology that has received increasing attention in recent
years from both a theoretical and empirical perspective (1–20).
This general question of persistence can be viewed in a variety
of particular contexts. The large body of theory that has been
developed to describe metapopulation dynamics poses this ques-
tion as a balance between colonization and extinction. Yet, in
many instances, especially where extinctions do not occur or
management depends on limited information, a different ques-
tion is more useful to ask, namely whether growth rates with
spatial heterogeneity are positive, looking only at deterministic
rather than stochastic aspects (12). This question, or variants of
it, arises in the context of reserve design, both for marine and
terrestrial populations, in understanding the consequences of
habitat fragmentation and for understanding the dynamics of
infectious agents. We address this question by using a particular
simple, general system that will allow us to deduce principles of
biological interest.

Our goals are to understand how the interplay between
connectivity (dispersal) and local population dynamics allows
persistence in a network of heterogeneous patches, and to
develop a simple general understanding of conditions for per-
sistence. This question is the analogue of the similar question for
persistence of a single species in a single patch. For a single
species with age structure and no density dependence, dynamics
are described by the Leslie matrix. Obviously, the population
persists if the growth rate of the population, the largest eigen-
value of the Leslie matrix, is �1. Yet, rather than directly
computing this eigenvalue, it is much simpler to use the criterion
that the population will persist, and the largest eigenvalue will be
�1, if the expected number of offspring per newborn is �1 (21).
This quantity has a clear biological interpretation in terms of
individuals replacing themselves in their lifetime. We aim to

obtain an analogous simple persistence criterion for spatially
structured populations. We analyze a simple density indepen-
dent matrix model that could be derived from the description of
a density-dependent spatially structured population at low abun-
dance. Persistence obviously could be determined from the
largest eigenvalue, but we seek instead an easily interpretable
persistence condition.

The distribution of populations over space, and movement of
individuals within them, are essential elements of their dynamics
(18–20, 22). Connectivity among subpopulations has been iden-
tified as important, but we have no way to compute the general
implications of connectivity for sustainability (23). Our under-
standing of the persistence of populations is essentially limited
to two cases: the single, well mixed, nonspatial population and
idealized systems of spatially distributed populations without
habitat heterogeneity. This limited understanding restricts our
ability to manage spatially distributed populations. For example,
marine fisheries collapse (24) for a variety of reasons, but
increasing and expanding fishing pressure is usually involved. As
anthropogenic pressures increase, there are fewer de facto
spatial refuges (25). Understanding and accounting for the
conditions under which spatially structured marine populations
can support sustainable fisheries is essential for improving their
management. The developing potential of spatial management
(26–29), for example the use of marine reserves and marine
protected areas, underscores this need. Marine species need to
be treated not as single populations but rather by using an
approach that explicitly includes their heterogeneity and con-
nectivity over space.

Understanding the implications of habitat fragmentation in
terrestrial habitats also requires a better understanding of the
interplay among connectivity, local growth rates, and persis-
tence. Much of the focus has been on the dynamics of met-
apopulations, where stochasticity plays a dominant role, but of
equal importance is an understanding of the fundamental de-
terministic factors that would lead to positive growth rates when
populations are rare. A simple heuristic description of the
conditions leading to a positive growth rate would provide
valuable information in the evaluation of management options
for spatially distributed populations, especially when data-poor
management is necessary.

In the fisheries context, there is currently a good understand-
ing of the persistence of single populations, and that information
is used in fishery management of marine populations. Deter-
ministic models with age structure and density-dependent re-
cruitment predict that populations persist when lifetime repro-
duction is greater than a certain value, and that is used to set
thresholds in fisheries management (30). However, this result
applies only to single populations, and it is not clear how to
summarize persistence of a spatially distributed population
where reproduction may vary over space. Even though most
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fished populations consist of adults distributed over space con-
nected by larval dispersal, that spatial distribution is generally
not accounted for in fishery management, although specific
simulations are possible (31).

In addition to providing a tool for conventional management,
our approach also provides guidelines for determining which
patches play a critical role in network persistence in spatially
explicit management, as in reserve networks (22, 31–34). Our
results complement several previously studied cases of persis-
tence in a spatial setting, including the single patch (35) and
equally spaced reserves with fishing completely removing indi-
viduals between them in a uniform habitat (36). The important
general case of persistence for species with heterogeneous
habitat has been approached only in ref. 18. Our results com-
plement and extend the development in ref. 18 by providing a
biologically interpretable version of the persistence condition in
the simplest possible case with habitat heterogeneity and ex-
ploring its applicability.

Here we address the case of a single species with a dispersing
juvenile stage (which we call juvenile for simplicity but could,
alternatively, be the adult stage) that are sedentary adults (or
possibly juveniles). This case includes many plants, butterflies,
marine and terrestrial invertebrates, reef-dwelling fishes, and
some rockfish. For this case, we provide biologically interpret-
able conditions for population persistence in a temporally con-
stant, but spatially heterogeneous, patchy environment. These
persistence conditions allow us to answer a variety of essential
questions. What is the persistence condition if habitats are
heterogeneous with different per capita propagule production or
survival and nonuniform patterns of dispersal as would arise
from physical advective processes such as in wind or water? In
a heterogeneous system, what parts of the system would be most
important to protect to achieve persistence? How does a network
of reserves function to ensure persistence of a species when a
single reserve cannot?

We use a general model of the dynamics of a species in an
arbitrary habitat, where the habitat is divided into a series of
discrete patches, which may be connected by the dispersing stage
in any fashion, and may have differing effects on egg production
or propagule settlement, and time is discrete. Here, we do not
address issues associated with using discrete patches to describe
a habitat that is in fact continuous, but we note that data on
population dynamics can only be collected in discrete patches,
and that there are ways to compare the discrete patch approach
to the continuous space approach (35). Moreover, what we are
calling a patch in this paper need not necessarily be a small,
connected region. We simply need to be able to specify rates of
self-retention of juveniles and rates of exchange of juveniles
between patches. To simplify our results, we do not include the
role of age structure. Although our model is phrased as though
there is no adult survival, this effect can be accounted for as part
of the term describing self-retention of juveniles. Thus, our
model applies directly, as long as the survivorship of adults is not
age dependent. We recognize that our approach does not take
into account some important aspects that would arise from
stochasticity and density dependence.

Model and Analysis
Our focus here is on the conditions for persistence in the
neighborhood of the equilibrium where the species would not be
present in any patch. In essence, we begin by looking at a model
for a population that is distributed among discrete habitat
patches of the form

ni�t � 1� � �
j

gji�fj�nj�t��, nj�t��,

where the sum is over all of the habitat patches in the system, ni(t)
is the population level in patch i at time t, fj is a function
describing the production of larvae in patch j as a function of the
adults in the patch in year t, and gji is a function that describes
how the number of larvae produced in patch j and the adults in
patch j the previous year contribute to the population level in
patch i, taking into account both larval survival and movement.
We can linearize this model about the zero equilibrium, leading
to a model that does not include density dependence. We are
assuming that population sizes are small in each patch and also
implicitly assuming that there is no Allee effect in any patch.
Thus, we are considering systems where extinction, if it occurs,
happens by a steady decline in every part of the habitat. We are
not including the effects of stochasticity but developing intuition
based on deterministic processes.

This procedure leads to a single-species matrix model that
need not include density dependence because our goal is to
understand criteria for persistence. For simplicity, we also first
consider a model that includes only simple year-to-year survival,
which does not change the nature of the results from a model
with adult survival, but allows us to emphasize and understand
the role of connectivity. Thus, the model we analyze can be
written as

Nt�1 � CNt, [1]

where Nt is an n-dimensional vector of population densities in
each of the n patches in year t, and C is a matrix with entries cij �
bjpijai, where ai is the propagule production per settling recruit
in habitat patch i, bj is the fraction of propagules arriving in
habitat patch j that successfully recruit (and survive until cen-
sused the next year) when the species is rare, and pij is the
probability that a propagule produced in habitat j ends up in
habitat i. Because C has only nonnegative terms, Perron–
Frobenious theory (37) implies that that C has a real eigenvalue
equal to its spectral radius, and therefore, the condition for
persistence is equivalent to the question of whether C has a real
eigenvalue �1. Although the Jury conditions (38) provide an
answer to this question directly, they are in a form that is very
complex and does not provide a biologically meaningful inter-
pretation. In the analogous situation for density independent
growth in a single population, the largest eigenvalue determines
persistence, but a much more useful heuristic criterion is whether
the expected lifetime reproduction of an individual is �1, as
noted above.

The first step toward deriving a biologically interpretable
persistence condition is to note that because C has a real
eigenvalue equal to its spectral radius, C will have no eigenvalues
�1 in magnitude if and only if the real part of all of the
eigenvalues of Q � C � I is negative. Thus, determining
persistence reduces to the question of whether the matrix Q has
any real positive eigenvalues.

We use results for M-matrices (39) to analyze Q. Matrices with
all nonpositive off-diagonal elements and only eigenvalues with
positive real parts are known as M-matrices. Thus �Q is poten-
tially an M-matrix because it has the correct sign pattern for its
entries. Using a standard result about M-matrices (39), that �Q
is an M-matrix (and has all eigenvalues with positive real part)
and therefore Q has all eigenvalues with negative real part (and
the model is not persistent) if and only if all principle minors of
Q are negative, i.e.,

� � 1�ndet J � 0, [2]

where J is any principal submatrix of Q, including Q itself.
Consequently, if [2] fails to hold for any submatrix, i.e., if any
principle minor is positive, then the population will persist
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because there will be at least one eigenvalue of Q with positive
real part.

One direct implication of the conditions implied by [2] is the
biologically reasonable (and trivial) observation that if any
subnetwork would be persistent without immigration, then the
full network would be persistent, e.g., if any patch is self-
sustaining, the population is, by definition, persistent. Thus, the
conditions for persistence of a network are of interest only when
no single patch could persist without receiving any immigrants
and with the same level of emigration, i.e.,

qii � bipiiai � 1 � 0, [3]

for all i. A similar implication [2] is that we need to check for
persistence at the level of smaller subnetworks before looking for
persistence for larger networks, again assuming that the level of
emigration is held fixed, and the subnetwork is assumed not to
receive any immigrants from outside.

Here we distinguish two possible aspects of persistence of a
single patch. One (which we call ‘‘demographic’’) focuses only on
the reproductive and settlement phases, and so asks whether ri �
aibi is �1, whereas the other (which we call ‘‘life cycle’’) asks
whether the patch could persist in isolation and so would include
the self-connectivity, and asks whether cii � piiri is �1 (as in
equation [3]). Obviously, at least one patch must be demo-
graphic persistent or the population will collapse.

Assuming that no single patch is (life cycle) persistent, the
magnitude of qii measures the shortfall in the sustainability of
each single patch that would have to be made up by contributions
from the other patches in the network (Eq. [3]). Then we can
determine persistence for the full network by considering the
converse of the condition [2], namely that the system persists if
any principle minor is positive. From Eq. [2], by using the
alternating sum definition of the determinant (37), we find that
a necessary and sufficient condition for persistence in a network
of n patches is

�
i�2

m �
��i,m�

�
P�l,i�

sgn(�)�qkl

�qkk
� 1, [4]

where the second sum is over all possible subnetworks �(i,m) of
i unique patches among any subset m of the n patches in the
original system, and the third sum is over all possible permuta-
tions P(l,i) of the indices of the i unique patches except permu-
tations that leave one or more indices unchanged. Finally, for the
products in the numerator and in the denominator, the index k
runs through the indices of the i unique patches in numerical
order and the index l contains the indices in the order given by
the permutation in the sum. Finally, sgn (�) is determined by the
sign of the permutation: It is 1 for an ‘‘even’’ permutation, and
�1 for an ‘‘odd’’ permutation. Condition [4] follows from the
definition of the determinant in terms of a sum of all possible
permutations of rows and columns followed by dividing the
resulting condition [2] by the product �qkk, where the product
runs from 1 to the number of patches (and, of course, reversing
the sign in the inequality as necessary). We thus see that the
condition for network persistence is most informatively written
in terms of the elements of Q, producing a form with direct
biological meaning, as we discuss below.

Our seemingly complex persistence condition [4] becomes
much more transparent when we write out the cases of two,
three, or four patches explicitly. For two patches, the persistence
condition [4] is

q12q21

�q11q22� � 1, [5]

whereas for three patches it becomes

q12q23q31

�q11q22q33� �
q13q32q21

�q11q22q33� �
q12q21

�q11q22� �
q13q31

�q11q33� �
q23q32

�q22q33� � 1.

[6]

For four patches, a new feature appears, so we write out that
condition for persistence as

q12q23q34q41

�q11q22q33q44� �
q12q24q43q31

�q11q22q33q44� �
q13q34q42q21

�q11q22q33q44� �
q13q32q24q41

�q11q22q33q44�

�
q14q43q32q21

�q11q22q33q44� �
q23q31q14q42

�q11q22q33q44� �
q23q34q42

�q22q33q44� �
q24q32q43

�q22q33q44�

�
q34q41q13

�q11q33q44� �
q31q14q43

�q11q33q44� �
q24q41q12

�q11q22q44� �
q42q21q14

�q11q22q44�

�
q12q23q31

�q11q22q33� �
q13q32q21

�q11q22q33� �
q12q21

�q11q22� �
q13q31

�q11q33� �
q14q41

�q11q44�

�
q23q32

�q22q33� �
q24q42

�q22q44� �
q34q43

q33q44�

� 1 �
q12q21q34q43

�q11q22q33q44� �
q13q31q24q42

�q11q22q33q44� �
q14q41q23q32

�q11q22q33q44� , [7]

with the new kind of terms on the right-hand side. For the
conditions [5–7], the denominators in all cases are products of
terms representing shortfalls in persistence in single patches. For
condition [5] note that the numerator is the only closed repro-
ductive path through both patches. Similarly, in [6], note that the
numerators in the three ‘‘two-patch’’ terms each represent the
possible closed reproductive paths through two patches in two
years of successive propagule dispersal, and that the two ‘‘three-
patch’’ terms represent the possible closed reproductive paths
through three patches in three years of successive propagule
dispersal.

With four or more patches, a new structure emerges because
there can be disjoint subnetworks, such as patches 1 and 2, and
also patches 3 and 4 in a four-patch system. Thus this system can
persist if any two-patch subnetwork persists, and also if any
three-patch subnetwork persists. The persistence due to the
two-patch subnetworks needs to be examined first, but then
persistence at the four-patch level should not ‘‘double’’ the count
of the contribution from the two-patch subnetworks. Thus, the
structure of the four-patch condition [7] is similar, but new terms
appear on the right-hand side representing the product of paths
through disjoint two-patch subnetworks. An example illustrating
the role of these terms is given below. With more patches,
additional terms representing products of nonoverlapping sub-
networks appear. Also the fact that a four-patch network
consisting of two disjoint two-patch subnetworks could persist if
either one or two of the subnetworks persisted means that one
needs multiple criteria for persistence, as we have outlined, and
explains why we do not obtain a single number like the repro-
ductive number for a single population.

We note again that a network can be persistent only if at least
one patch is demographic persistent, but can persist if no patch
is life cycle persistent. Although the two-patch conditions are
contained in the three-patch conditions as is seen in [5] and [6],
the condition for persistence from interactions among four
patches as in [7] may not hold, whereas it does hold for two
disjoint two-patch subnetworks. Thus, one needs to check per-
sistence conditions for subnetworks as well as the persistence
conditions involving loops with larger numbers of patches.
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Examples. We present here examples that illustrate our general
conditions. In general, joint persistence among patches repre-
sents a network effect, beyond the combined effects of individual
patches. For example, in Eq. [5], assume that c11 � c22 � 0.9, so
each population in isolation would decrease by 10% each year,
accounting for local population dynamics and losses because of
dispersal out. Then, for persistence, the between-patch repro-
ductive gain, q12q21, must exceed (0.1)2. The quantity q12q21 is the
product of the per capita production rates in each patch per
settling propagule, the fraction of individuals produced in patch
1 that settle in patch 2, and the fraction of individuals produced
in patch 2 that settle in patch 1, minus 1. An important
characteristic of this expression is that none of the reproductive
paths need to provide a reproductive gain �1.0, rather it is only
the weighted sum of the reproductive gains in all paths that is
important.

Given the form of the persistence conditions, even patches
that are sinks (even life cycle sinks) may be essential for the
persistence of a network. If there is a two-patch network (patches
labeled 1 and 2) that is not persistent, then adding a third patch
may ensure persistence even if the third patch is a life cycle sink,
with q33 	 1, if the third patch acts as a vital link by contributing
enough connectivity.

As another example, we consider a three-patch network where
no two-patch subnetwork is persistent and also where the
network would not persist if the only connections would be
between neighboring patches. We then ask how large the con-
nectivity between the end patches must be for the system to
persist. For an example, assume that the connectivity matrix
takes the form

� 0.65 0.1 p13

0.08 0.8 0.1
p31 0.1 0.75

� .

We have specified all of the connectivities, except those between
patches 1 and 3, and we will examine how persistence may
depend on the strength of this connection. Further assume that
the population dynamics are the same in each patch, so that
aibi � 1.1 for all three patches.

We now compute the persistence conditions. From the left-
hand side of [5], we see that, if p13 � p31 � 0, the values of the
terms for the two different two-patch subnetworks on the
left-hand side of [6] would be 0.283014 and 0.57619, summing to
0.859231, so the system would not persist. However, if p13 �
p31 � 0.03, then the left-hand side of [6] would be 1.00156, and
the system would be persistent. Note that, in this case, the
contribution from the pathway involving patches 1 and 3 would
be 0.02183, whereas the two different pathways through all three
patches would contribute 0.06671 and 0.05337. The relatively
small numerical values of the contributions from the pathways
through three patches is typical for many reasonable connectivity
matrices.

We now discuss a four-patch example with patches arranged
in a line, with dispersal only between neighboring patches, so
qij � 0 unless i � j, or i and j differ by 1. To present the persistence
condition, it is easiest to first give a name to the two-patch
persistence condition, defining

��i, j� �
qijqji

�qiiqjj�
�

aiajbibjpijpji

��1 � qibipii��1 � ajbjpjj��
, [8]

where the order of i and j does not matter and i is different from
j. Thus �(i, j) is a summary of the persistence condition for two
patches and is very useful in writing a compact form of the
persistence for more than two patches.

Assuming that no single patch is persistent, and that no
two-patch subnetwork is persistent, �(i, j) 	 1 for all pairs i and

j, the relevant three-patch subnetwork persistence conditions are
� (1, 2) � � (2, 3) � 1 or � (2, 3) � � (3, 4) � 1. Finally the
four-patch persistence condition becomes

��1, 2� � ��2, 3� � ��3, 4� � 1 � ��1, 2���3, 4�. [9]

Thus, for example, if � (1, 2) � 0.7, � (2, 3) � 0.2, and � (3, 4) �
0.7, no two-patch or three-patch subnetwork is persistent, but the
four-patch network is persistent. Here the two patches 1 and 2
form one subnetwork, which is only loosely connected to the
subnetwork formed by patches 3 and 4. Consequently, if the
connection between the two disjoint two-patch subnetworks
were weaker, if � (2, 3) 	 0.09, then the four-patch network
would not persist either. This example helps illustrate the
heuristic role played by the terms on the right-hand side of [7],
and explains why we need to look at both the condition for the
two-patch subnetworks and the four-patch systems to check for
persistence.

Note also that if there is a two-patch subnetwork that is weak,
where it is located in a linear array with only nearest neighbor
dispersal can be critical for persistence, as would be expected.
Thus, if the values of � for the three two-patch subnetworks of
a linear four-patch network were 0.5, 0.4, and 0.25, and if the
poorly connected two-patch network represented by the measure
� � 0.25 was at either end, the system would be persistent,
whereas if it was in the middle [� (2, 3) � 0.25] the system would
not persist.

Extensions. Two important extensions to our linear model can be
considered in the same framework we have developed here,
namely, the role of adult survivorship, and the consistency of our
approach when more finely dividing the available habitat into
more patches. Our model [1] as defined above does not include
adult survivorship, but a model with adult survivorship could be
written simply as

Nt�1 � CNt � SNt,

where the entries in the diagonal matrix S are the patch-specific
adult survivorship rates. If we then define a new matrix C* � C �
S, we can then repeat our analysis above and obtain analogous
results.

As we have suggested, the division of the habitat into patches
can be arbitrary. We therefore consider the consequences of the
division of the division of patch i into patches j and k, demon-
strating that if the demographic and dispersal parameters are
consistent, that the persistence condition is unchanged. We
assume that rj � rk � ri, which leads to conditions on the
parameters describing per capita larval production and larval
survivorship. We also need consistency of the dispersal param-
eters, so we need to assume that pii � pjk � pkk � pkj � pjj, so
retention is the same. We also need to assume that pli � plj � plk,
for any other patch l, so the probability of dispersal to patch l is
the same. Finally, assuming that the probability of dispersing
from patch l is the same leads to the condition pil � pjl � pkl.
Under all these conditions, it is a straightforward calculation to
show that for the maximal positive eigenvalue (growth rate) � for
the original model with corresponding eigenvector, then the
model with the ith patch divided will also have an eigenvalue �
with an analogous corresponding eigenvector where the ith entry
is now repeated to correspond to patches j and k. Thus we can
increase the resolution of our model in a consistent fashion
without changing the persistence of the system. Then we can look
at the effects of changing parameters in this system described at
a higher level of resolution.
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Discussion
We have developed a biologically interpretable quantitative
condition for persistence of a spatially structured population,
which is also easily understood when written explicitly for small
numbers of patches, as in [5–7]. Also we note again that the Jury
conditions (37) also provide essentially equivalent necessary and
sufficient conditions, but because they do not take into account
the structure of the matrix (positive entries) they are not as
simple nor are as easy to interpret biologically. The overall
advantage of this expression is that it provides a condition that
is both easily interpretable and quantitative. Note that this
condition, although on the surface similar to earlier results (40,
41), is in fact different, providing a necessary and sufficient
condition for persistence (here instability 
0) that depends
critically on the signs of the entries in the model, unlike the
earlier results. The underlying model we use is not a conven-
tional metapopulation model that would allow for stochasticity
and extinctions and colonization. Instead, we determine a per-
sistence condition for a deterministic model with underlying
spatial heterogeneity in growth and specified connectivity.
Kritzer and Sale (42) have discussed this kind of development of
metapopulation models for marine populations, where frequent
extinctions and recolonizations are not the primary issue. Similar
questions arise in understanding the dynamics of diseases and
the role of habitat fragmentation (43). We also need to empha-
size that the deterministic conditions we derive in the absence of
density dependence need to be used as a guide in more complex
situations where other issues are included.

Our condition for persistence when no patch can persist in
isolation, Eqs. [4–7], has a simple heuristic interpretation: Each
term essentially represents the gain in number of individuals that
are contributed to a patch through successive generations by
dispersal among a set of patches (the numerator), relative to a
power of the geometric mean of the shortfall in each patch below
what would be necessary for that patch to be self-sustaining (the
denominator). The form of each term in the sum indicates that
the shortfall in individual patches can be made up by reproduc-
tive paths through other patches. This form clearly implies that
only patches that truly both receive and contribute propagules to
the entire system play a role in the sustainability of the system,
although the effect of adding an additional patch to a network
is quite complex, as we showed above.

The results obtained here can contribute to our intuition
regarding spatially structured populations. The form of the
terms in the persistence condition [4], [5], [6], or [7] describe
the currency by which we should measure a patch’s contribution
to persistence. Each term can be envisioned as an element
contributing to persistence, which will have a connectivity
component, divided by the local shortfall in persistence. Note
that when considering different subnetworks here, we are as-
suming that adding or removing patches does not change the rate
of movement among the patches, as would be the case for larvae
that are not actively choosing settlement sites. Furthermore,
ecologists commonly think about the dynamics of spatially
distributed populations in terms of their source�sink nature.
Although the notion of source and sink has a variety of defini-
tions (18, 33, 44), our result makes explicit the important
consideration of connectivity (45). It is not simply the number of
propagules being exported to other patches that is important but
also the number returning.

A second general conclusion (obvious from the form of Eqs.
[4–7]) is that in the persistence condition the population
dynamic description appears only as ri � aibi, namely the per
capita production and propagule survival in each patch enter
into the condition for persistence only as the product. (The
denominators only contain terms of the form qii, and in the
numerator, if there is a qki, then there also is a qij as well, where

k and j may be the same.) Thus, when considering a network,
the key patches are those that are good for both production and
propagule settlement.

For any number of patches, the interpretation of the form is
similar, a sum of the product of reproductive gain divided by
individual shortfall in persistence, summed over all possible
reproductive paths relative to unity and terms that essentially
prevent double counting of contributions from smaller subnet-
works. Increasing the number of patches in the same area
increases resolution, but understanding the effect on the persis-
tence condition is complex as this increase will change the
connectivity (pij) terms. For example, dividing a single patch in
two will typically change the pii term for the two new patches
relative to the original one, unless there is no dispersal at all. As
we have shown, increasing the resolution does not introduce
inconsistencies in the persistence condition, and changes in
persistence if the connectivities are defined in a consistent
fashion.

From a practical standpoint, although the exact values of
parameters that appear in the formulae exhibited in this paper,
specifically the propagule distribution patterns, are currently
highly uncertain in most systems, the results clearly delineate the
kind of information that is needed to make a quantitative
determination of persistence. However, in the marine realm,
attempts to obtain information on connectivity are increasing by
using techniques like chemical analysis of otoliths of fish (46),
and analogous approaches may be applied to some mollusks. The
analysis in ref. 46 provides some initial estimates of a connec-
tivity matrix. A variety of techniques can be used to determine
connectivity and spatial scale (45), including approaches based
on genetics and on chemical signatures, each having advantages
and pitfalls. This question of population connectivity is a diffi-
cult, but important, question to address.

The major result of this paper does provide intuitive guidance
for overfishing, marine reserves, essential fish habitat, under-
standing habitat fragmentation, and delisting criteria for endan-
gered species. In each of these applications, although the values
of pij may currently be uncertain, we can control the values of ri.
In fisheries, the parameters ri will be heterogeneous over space
because of an uneven distribution of effort in addition to possible
heterogeneous habitat. The single population condition used in
fishery management (30) is our condition for life cycle persis-
tence. Our results show that it can be unmet for all individual
subpopulations, yet the full population may persist. This situa-
tion may exist in heavily fished populations. In deciding which
fish habitat should be included as essential fish habitat, the
condition given here emphasizes that connectivity is as essential
to consider as productivity. For example, consideration of
connectivity might tend to lead to several protected areas near
each other, rather than many spread further apart. Some other
results for persistence of marine reserves are special cases of the
condition derived here, if one considers all reserve areas to be
one habitat type and all fished area to be another type (36, 47).

Although we have used a standard definition of persistence
here, that a persistent population increases when rare in a
deterministic model, other definitions may be desirable (e.g.,
including a condition for minimal abundance at all locations).
Such definitions may be useful for marine reserves. These
other definitions will likely include some elements similar to
the conclusions drawn here, in the sense that areas that include
patches that contribute significantly to persistence as defined
here are likely to be areas of higher density under other
definitions. Extending the results here to include these effects,
and also stochasticity and species with highly mobile adults, is
an important challenge for future work. As we have shown,
extending the results here to include adult survivorship is also
relatively straightforward and does not change the nature of
the results, as doing so involves only changing the terms
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involving the self-recruitment. However, the results from our
modeling approach obviously can be taken only as a guide to
understanding, and the effects of stochasticity of various kinds
and other aspects we do not consider would need to be taken
into account when looking at more complex systems.

In summary, the results obtained here provide a valuable tool
for understanding and managing populations distributed in
space. Currently used approaches to persistence cannot deal with
the acknowledged dynamically important spatial structure and
internal connectivity of these populations. Further examination
of these results will allow us to determine the potential effects

of areas of current uncertainty and may lead to refinements of
the definition of persistence.
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